Abstract

The motion accuracy of hydrostatic turntable is the key in improving the machining accuracy of heavy-duty machine tool. However, the motion accuracy of hydrostatic turntable depends not only on the offset load but also on the rotating speed of the turntable as well as the profile errors of the guide rails. In this paper, a simulation model is developed to analyze the effect of guide rail profile errors on the motion accuracy of hydrostatic turntable. The reaction forces of preload thrust bearing and hydrostatic circular oil pads are obtained based on the Reynolds equation of the lubricant film. The motion equations of hydrostatic turntable are derived in which the profile errors of two guide rails are considered. The results show that the motion accuracy of hydrostatic turntable can be affected by wavelength, amplitude of profile errors and speed, and offset load of turntable. Finally, the motion accuracy of heavy-duty hydrostatic turntable used in XCKA28105 type turning and milling composite machine tool is obtained by using the presented method. Comparing with the experimental results, the proposed model can be used to predict the machining accuracy caused by the profile errors of guide rails for any heavy-duty hydrostatic turntable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call