Abstract

Time–frequency non-stationarity is a ground motion characteristic which is frequently neglected in current seismic design and research. This paper studies its impact on the seismic response of high-speed railway simply supported bridge (HSRSSB). A method for generating time–frequency stationary earthquakes (TFSEs) and time–frequency non-stationary earthquakes (TFNSEs) using wavelet packet transform is proposed. A finite element model of a three-span HSRSSB is established using OpenSees. The seismic response is obtained through non-linear dynamic time history analysis, and the fragility curves of bridge components and system are calculated through incremental dynamic analysis. Finally, the reasons for the differences are analyzed by comparing the differences in seismic response of bridge, component fragility and system fragility under two groups of ground motion. The results show that the time–frequency non-stationarity of ground motion has an effect on the bridge response and fragility under strong earthquakes. TFNSE will lead to larger ground motion response, and the damage probability of bridge components and systems is higher. The reason is related to the damage and period extension of bridges under ground motion. Structures with prolonged period anti-seismic measures need to pay attention to this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.