Abstract

Little consideration has been given to vibrations when the effect of grinding process parameters on the surface morphology is studied. Taking a grinding force as the intermediate variable, influences of grinding depths on the surface topography are investigated with considering vibrations in this paper. Firstly, a novel grinding force prediction model is proposed through amending the Malkin model by integrating with contact arc length and abrasive grain contact angle. Secondly, vibrations of the feed platform and the grinding wheel shaft are analysed. Vibration displacement in the x-direction of wheel axis remains substantially between 140-150 nm, while in the y-direction, it increases with the grinding depth. Finally, three-dimensional surface topographies with different grinding depths are investigated. It is observed that the pronounced defects and a coarse texture are generated as the grinding depth increases. Parameters like Sa, Sq, Sku, Ssk are more suitable to represent the real grinding quality of workpiece surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call