Abstract

Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for characterizing of mechanical properties (indentation hardness HIT, Young’s modulus EIT, indentation energy: total Wtotal, elastic Welast, plastic Wplast) of homogeneous (bulk) materials. However, real materials such as multi-phase steels are a heterogeneous material on the microscopic scale (microstructure). We need to know the local mechanical properties of each phase separately in those materials for reasons development of new materials and for modeling. Mechanical properties of each phase separately in multiphase materials are difficult or even impossible to examine in bulk material ex situ.In this paper we describe the technique for measuring the mechanical properties of each phase separately in multiphase steel by two-dimensional mapping tool. This approach relies on large arrays of nanoindentations (known as grid indentation) and statistical analysis of the resulting data [1, 2]. The aim of this investigation is to optimize the parameters of the grid indentation for a given microstructure of steel sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call