Abstract
This paper deals with linear and nonlinear stability analyses of thermal convection in a dielectric fluid saturated anisotropic Brinkman porous layer subject to the combined effect of AC electric field and time-periodic gravity modulation (GM). In the realm of linear theory, the critical stability parameters are computed by regular perturbation method. The local nonlinear theory based on truncated Fourier series method gives the information of convection amplitudes and heat transfer. Principle of exchange of stabilities is found to be valid and subcritical instability is ruled out. Based on the governing linear autonomous system several qualitative results on stability are discussed. The sensitive dependence of the solution of Lorenz system of electrothermal convection to the choice of initial conditions points to the possibility of chaos. Low frequency g-jitter is found to have significant stabilizing influence which is in turn diminished by an imposed AC electric field. The role of other governing parameters on the stability threshold and on transient heat transfer is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.