Abstract

Purpose The development of a new class of engineering materials is the current demand for aircraft and automobile companies. In this context metal, composite materials have a widespread application in different areas of manufacturing sectors. Design/methodology/approach In this paper, an attempt is made to develop the aluminium-based nano metal matrix composite reinforced with graphene nanoparticles (GNP) by using the stir casting method. Different weight percentage (0.4%, 0.8% and 1.2% by weight) of GNPs are used to fabricate metal matrix composites (MMCs). The developed nanocomposites were further validated by density calculation and optical microstructures to discuss the distribution of GNPs. The tensile test was conducted to determine the strength of the developed MMCs and also supported by fractographic analysis. In addition to it, the Rockwell hardness test and impact test (toughness) with fracture analysis were also conducted to strengthen the present work. Findings The results reveal the uniform distribution of GNPs into the matrix material. The yield strength and ultimate tensile strength obtained a maximum value of 155.67 MPa and 170.28 MPa, respectively. The hardness value (HRB) is significantly increased and 84 HRB was obtained for the sample with AA1100/0.4% GNP, while maximum hardness value (94 HRB) was obtained for the sample AA1100/1.2% GNP. The maximum value of toughness 14.3 Jules/cm2 is recorded for base alloy AA1100 while increasing the reinforcement percentage, it decreases up to 9.7 Jules/cm2 for AA1100/1.2% GNP. Originality/value Graphene nanoparticles are used to develop nanocomposites, which is one of the suitable alternatives for heavy engineering materials such as steels and cast irons. It has improved microstructural and mechanical properties which makes it preferable for many engineering and structural applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call