Abstract

Proper valorization of the sawing wastes in industrial sawmills is a permanent issue with strong economic and environmental stakes. Most industrial sawmills are equipped with chipper-canter heads reducing the outer part of the logs into chips used in the pulp and paper industry. Optimization in canter use would increase the acceptable proportion of exploitable chips for this industry. With chipper-canters, the cutting direction varies along the cut. This study investigates the impact of the angle formed between the cutting direction and the grain direction on the required cutting force and the chips’ geometry. Orthogonal cutting is conducted to simulate the chipper-canter machining operation on green beech. To lower the cutting forces when machining, aiming for a cutting direction as parallel as possible to the wood fiber is necessary. However, if this angle is too low, the chips’ generated geometries prevent them from a proper valorization of this resource. A compromise with grain direction between 50° to 70° both limits the cutting forces and improves the steadiness of the chip fragmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.