Abstract

The effect of glimepiride on metabolism of S-warfarin to 7-hydroxywarfarin was studied using human liver microsomes and recombinant cytochrome P450 2C9 microsomes (CYP2C9.1 and CYP2C9.3), and was compared with the results from the experiments using glibenclamide as an inhibitor. S-Warfarin 7-hydroxylation by recombinant CYP2C9.1 and CYP2C9.3 was inhibited by glimepiride competitively. The apparent K(i) value of glimepiride was lower at CYP2C9.3 than at CYP2C9.1. Glimepiride also inhibited 7-hydroxylation of S-warfarin in a competitive manner by microsomes from human liver which showed the genotypes of CYP2C9, as CYP2C9*1/*1 or CYP2C9*1/*3. The apparent K(i) value of glimepiride was lower than that of glibenclamide. These results may provide valuable information for optimizing the anticoagulant activity of warfarin when glimepiride is co-administered to patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.