Abstract

Hollow-strut metal lattice structures are currently attracting extensive attention due to their excellent mechanical performance. Inspired by the node structure of bamboo, this study aimed to investigate the mechanical performance of the gradient hollow-strut octet lattice structure fabricated by laser powder bed fusion (LPBF). The effect of geometrical parameters on the yield strength, Young's modulus and energy absorption of the designed octet unit cells were studied and optimized by FEA analysis. The hollow-strut geometrical parameters that deliver the best mechanical property combinations were identified, and the corresponding unit cells were then redesigned into the 3 × 3 × 3 type lattice structures for experimental evaluations. Compression tests confirmed that the designed gradient hollow-strut octet lattice structures demonstrated superior mechanical properties and deformation stability than their solid-strut lattice structure counterparts. The underlying deformation mechanism analysis revealed that the remarkably enhanced bending strength of the gradient hollow-strut lattice structure made significant contributions to its mechanical performance improvement. This study is envisaged to shed light on future hollow-strut metal lattice structure design for lightweight applications, with the final aim of enhancing the component's mechanical properties and/or lowering its density as compared with the solid-strut lattice structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.