Abstract

The aim of the present research is to discuss the effect of gap on plasma plume, keyhole, and molten pool dynamics during laser lap welding for T-joints. The authors observe plasma plume, keyhole opening, and molten pool images by high-speed camera in different gaps during CO2 laser overlap welding of T-joints. The results show that gap causes beam energy fluctuations in the keyhole and leads to the instability of welding process. In laser spot welding, zero-gap and small gap greatly affect the stability of plasma and keyhole, which causes the formation of cavities in the weld metal, while a proper gap can help prevent porosity formation. In laser continuous welding, the disruption and closure of front keyhole wall at the gap periodically changes with the gap, which causes the formation of plenty of porosities at the gap. The instability of keyhole is closely related to dynamics of plume and molten pool, which gives an insight into the mechanism of porosity formation during laser overlap welding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call