Abstract
In laser and electron-beam welding, a deep cavity called a keyhole or beam hole is formed in the weld pool due to the intense recoil pressure of evaporation. The formation of the keyhole leads to a deep penetration weld with a high aspect ratio and this is the most advantageous feature of welding by high-energy-density beams. However, a hole drilled in a liquid is primarily unstable by its nature and the instability of the keyhole also causes the formation of porosity or cavities in the weld metal. In particular, the porosity formation is one of the serious problems in very high-power laser welding, but its mechanism has not been well understood. The authors have conducted systematic studies on observation of keyhole as well as weld pool dynamics and their related phenomena to reveal the mechanism of porosity formation and its suppression methods. The article will describe the real-time observation of keyhole and plume behaviors in the pulsed and continuous-wave laser welding by high-speed optical and x-ray transmission methods, the cavity formation process and its suppression measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.