Abstract

Gamma ray induced modifications in natural phlogopite mica have been studied in the dose range of 1–2000 kGy. These modifications were monitored using different techniques viz: ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy, dielectric measurements, X-ray diffraction, and thermoluminescence dosimeter. The analysis of the results reveals that the dose of 100 kGy produces significant change in the natural phlogopite mica as compared to pristine and other exposed samples. Ultraviolet-visible analysis provides the value of optical indirect, direct band gap, and Urbach energy. Cody model was used to calculate structural disorder from Urbach energy. Different dielectric parameters such as dielectric constant, dielectric loss, ac conductivity, and real and imaginary parts of electric modulus were calculated for pristine and irradiated samples at room temperature. Williamson Hall analysis was employed to calculate crystallite size and micro-strain of pristine and irradiated sheets. No appreciable changes in characteristic bands were observed after irradiation, indicating that natural phlogopite mica is chemically stable. The natural phlogopite mica may be recommended as a thermoluminescent dosimeter for gamma dose within 1 kGy–300 kGy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.