Abstract
When added to the mucosal solution bathing isolated frog skin at concentrations ranging from 5 X 10(-4) to 3 X 10(-3) M, the diuretic furosemide increased both the active transport of sodium and the electrical potential difference across the tissue in a dose-dependent way. The same effect was observed in chloride-free solutions. Mucosal furosemide also decreased the passive unidirectional fluxes of chloride. We believe that as far as electrical parameters are concerned mucosal furosemide has a double effect in frog skin: it increases the active conductance to sodium across the mucosal membrane, thus increasing active transport, and decreases the passive permeability to chloride, thus altering the passive conductance of the skin. The relative increase in short-circuit current was, however, invariably greater than the increase of the active conductance, suggesting the influence of yet a third effect. The effect of mucosal furosemide on active sodium transport was blocked by amiloride (5 X 1-(-5) M) and was independent of vasopressin. Qualitatively the effect was similar to the effect produced by triphenylmethylphosphonium ion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have