Abstract
Creep properties of a polycrystalline binary near γ-TiAl intermetallic in two fully lamellar microstructural conditions are presented. Creep tests (760°C/240 MPa) indicate that a lamellar structure with fine interface spacing and planar grain boundaries improves creep resistance. A lamellar structure with wide lamellar interface spacing and interlocked grain boundaries has less than half the creep life, five times higher minimum creep strain rate and a greater tertiary creep strain. The deformation substructures are presented in terms of the lamellar orientation to the stress axis and indicate that creep strain is accommodated by dislocation motion in soft oriented grains, but the creep strain rate is controlled by hard oriented grains. The extent of tertiary creep is controlled by the grain boundary morphology, with planar grain boundaries susceptible to intergranular cracking. The results suggest that to maximize the creep resistance of near γ-TiAl intermetallics with lamellar microstructures requires narrow lamellar interface spacing and interlocked lamellae along grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.