Abstract
There are currently no restrictions on the coefficient of friction of tennis courts or strings. The aim of this paper was to determine the effect of friction on tennis ball impacts. Finite element models were used to determine the effect of friction for oblique spinning impacts both between a tennis ball and a rigid surface and between a tennis ball and the string bed of a freely suspended racket. The results showed that during an oblique impact a tennis ball can behave in any of the following ways: first, it can slide, second, it can slide and then ‘overspin’, or, third, it can slide, overspin, and then converge towards rolling. The ball will slide throughout the majority of impacts on the court during play. Therefore, the rebound topspin of the ball will increase with increasing court friction and the horizontal rebound velocity will decrease. The ball will roll off the string bed for the majority of groundstrokes, and the rebound properties will effectively be independent of string bed friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.