Abstract

An extensive experimental and computational investigation of the combined and separate effects of free surface and body on the lift characteristics of a pair of fins attached to a strut and fin alone is conducted. The results reveal that the free-surface effect becomes significant when the depth of submergence to chord ratio ( H/ c) is less than three. The effect of the strut is also realized for shallower depth of submergence of the fins through free-surface deformation leading to a significant change in the incidence angle of the flow to the fins. The numerical results based on the Higher Order Boundary Element Method with the linearized free-surface condition show good agreement with the experimental results for fin (foil) alone even at shallow submergence, but some discrepancies appear for the fin attached to the strut at higher speeds mostly due to the neglect of the nonlinear free-surface effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.