Abstract

The fuel mixing process within the combustion chamber is a critical procedure for advance of scramjet engine. In current study, the influence of free stream angle on the fuel mixing process of multi jets was thoroughly investigated. This research attempts to applied computational technique to disclose the structure of multi-fuel jets when the supersonic air stream is not normal to the jet direction. The effect of both positive and negative supersonic free stream on the diffusion and penetration of multi-hydrogen jets is fully described. The attention of this research is the flow structure of the multi jets and their interaction in the presence of different free stream angle. Our results indicate that the positive free stream angle expands the mixing zone in the downstream while the negative angle of free stream limited jet distribution inside the combustor. Our results show that mixing efficiency increase approximately 50% when the angle of free stream augments from +20° to −20°. According to our findings, mixing efficiency surges up to 17% when the jet spaces are increased from 4Dj to 10 Dj.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.