Abstract
Abstract Efficient distribution of hydrogen gas inside the supersonic chamber is the main challenge for the increasing the performance of the supersonic vehicles. In this study, the new injection arrangements of the multi hydrogen jets within the cavity flameholder are comprehensively studied at a supersonic free stream. In order to investigate the effect of multi jets within a cavity flameholder, a three-dimensional model is developed and computational technique is used to simulate the flow and mixing zone inside this region. The influence of important parameters such as the pressure of jet and free stream Mach number is investigated to illustrate the flow pattern and evaluate the mixing rate in the supersonic combustion chamber. Obtained results show that the rise of the total pressure of hydrogen jet enlarges the ignition zone within the cavity. Furthermore, the increase of free stream Mach number limited the mixing rate and jet interaction. Our findings confirm that fuel jet with PR = 0.5 significantly enhances the performance of the cavity flameholder inside the scramjet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.