Abstract

The purpose of this study was to investigate the potential neuroprotective effects of myricetin (flavonoid) and fraxetin (coumarin) on rotenone-induced apoptosis in SH-SY5Y cells, and the possible signal pathway involved in a neuronal cell model of Parkinson's disease. These two compounds were compared to N-acetylcysteine. The viability of cells was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and cytotoxicity was assayed by lactate dehydrogenase (LDH) released into the culture medium. Parameters related to apoptosis, such as caspase-3 activity, the cleavage of poly(ADP-ribose) polymerase and the levels of reactive oxygen species were also determined. Rotenone caused a time- and dose-dependent decrease in cell viability and the degree of LDH release was proportionally to the effects on cell viability. Cells were pretreated with fraxetin, myricetin and N-acetylcysteine at different concentrations for 30 min before exposure to rotenone. Cytotoxicity of rotenone (5 μM) for 16 h was significantly diminished as well as the release of LDH into the medium, by the effect of fraxetin, myricetin and N-acetylcysteine, with fraxetin (100 μM) and N-acetylcysteine (100 μM) being more effective than myricetin (50 μM). Rotenone-induced apoptosis in SH-SY5Y cells was detected by an increase in caspase-3 activity and in the cleavage of poly(ADP-ribose) polymerase. After exposing these cells to rotenone, a significant increase in reactive oxygen species preceded apoptotic events. Fraxetin (100 μM) and N-acetylcysteine (100 μM) not only reduced rotenone-induced reactive oxygen species formation, but also attenuated caspase-3 activity and poly(ADP-ribose) polymerase cleavage at 16 h against rotenone-induced apoptosis. The effect of fraxetin in both experiments was similar to that of N-acetylcysteine. These results demonstrated the protective action of fraxetin and suggest that it can reduce apoptosis, possibly by decreasing free radical generation in SH-SY5Y cells. Myricetin at 100 μM was without any preventive effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.