Abstract

To verify the effect of the frame rate on image quality in cardiology, we used an indirect conversion dynamic flat-panel detector (FPD). We quantified the input-output characteristics, and determined the modulation transfer function (MTF) and normalized noise power spectrum (NNPS) of the equipment used in cardiology at 7.5, 10, 15, and 30 frames per second (fps). We also calculated the noise power spectrum for still images and videos at all frame rates and obtained the image lag correction factor r. The input-output characteristics and the MTF agreed even when the frame rate was varied. The NNPS tended to decrease uniformly as a function of frequency at increasing frame rates. The factor r decreased as a function of the frame rate, and its minimum value was 30 fps. Our results suggest that high-frame-rate imaging in cardiology using indirect conversion dynamic FPDs is affected by image lag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.