Abstract

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms develop within 2 to 3 days of exposure and include fever and vesicular lesions on the tongue and hooves. Dendritic cells (DC) play an essential role in protective immune responses against pathogens. Therefore, investigating their role during FMDV infection would lead to a better understanding of host-pathogen interactions. In this study, following infection of cattle with FMDV, we investigated the frequency and function of conventional (cDC) and plasmacytoid DC (pDC) in blood by using multi-color flow cytometry. We show that the frequency of cDC and pDC increased following FMDV infection and peaked 3 to 4 days post-infection. During peak viremia, the cattle became lymphopenic, the expression of MHC class II molecules on cDC and pDC was dramatically down-regulated, the processing of exogenous antigen by cDC and pDC was impaired, and there was an increase in IL-10 production by DC and monocytes. Notably, after clearance of FMDV from the blood, MHC class II expression returned to pre-infection levels. Altogether, our study demonstrates that in cattle, FMDV inhibits the function of DC, thereby retarding the initiation of adaptive immune responses, potentially enhancing virus shedding during the acute phase of infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.