Abstract

We discuss the effect of different types of fluctuations on dynamos generated in the limit of scale separation. We first recall that the magnetic field observed in the VKS (von Karman flow of liquid sodium) experiment is not the one that would be generated by the mean flow alone and that smaller scale turbulent fluctuations therefore play an important role. We then consider how velocity fluctuations affect the dynamo threshold in the framework of mean-field magnetohydrodynamics. We show that the detrimental effect of turbulent fluctuations observed with many flows disappears in the case of helical flows with scale separation. We also find that fluctuations of the electrical conductivity of the fluid, for instance related to temperature fluctuations in convective flows, provide an efficient mechanism for dynamo action. Finally, we conclude by describing an experimental configuration that could be used to test the validity of mean-field magnetohydrodynamics in strongly turbulent flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call