Abstract
The tribological properties of Cu-based and Zr-based bulk metallic glasses (BMGs) sliding against Si3N4 under dry and water lubrication were studied on a pin-on-disc tribometer. The wear mechanisms of bulk metallic glasses were investigated based on the calculated flash temperature. The friction coefficients if fully amorphous alloy are about 0.7, while those of BMGs with nanocrytalline are a little higher. The wear rates of Cu-based BMG (V101) are about one order of magnitude lower than those of Zr-based BMG (Vit1) under dry friction, even two orders of magnitude lower under water lubrication. The wear resistance of bulk metallic glasses was influenced by the flash temperature. The calculated flash temperature (3,337 K) on the friction surface of Zr-based amorphous alloy exceeds its glass transition temperature, even its melting temperature. The high flash temperature leads to glass transition accompanied with viscous flow and material transfer, which is responsible for the poor wear resistance of Zr-based BMGs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have