Abstract

Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene terephthalate (PET) is more environmental friendly and sustainable. The effect of adding 5% to 20% waste plastic by volume of natural coarse aggregate (“gravel”) and plastic particle size (3 to 7 mm) on the density and compressive strength of plastic-concrete mix after 28 days of curing was studied. The results showed that density of the concrete decreased from 2406.7 to 2286.7 kg/m3 as waste plastic increased from 5% to 20% v/v compared with 2443.3 kg/m3 recorded by concrete without waste plastic. Change in particle size from 3 to 7 mm has no significant effect on the density of the plastic-concrete mix. The compressive strength decreased as the volume and particle size of waste plastic increased. When waste plastic volume changed from 5% to 20% v/v, the compressive strength decreased from 20.5 to 15 MPa, 18.6 to 14.3 MPa and 17.2 to 13.8 MPa for 3, 5 and 7 mm waste plastic particle size respectively while the concrete without plastic has 21.33 MPa. Therefore, the addition of 5% (v/v gravel) of flaky waste plastic in the concrete produces a lightweight concrete which could offer economic benefit without substantially reducing the compressive strength of the plastic-concrete mix.

Highlights

  • Plastic is commonly produced from petroleum-based materials which are nonrenewable

  • The results showed that density of the concrete decreased from 2406.7 to 2286.7 kg/m3 as waste plastic increased from 5% to 20% v/v compared with 2443.3 kg/m3 recorded by concrete without waste plastic

  • These results clearly show that increased addition of flaky plastic in the range of 5% to 20% v/v of coarse aggregate consistently decreased the compressive strength regardless of the waste plastic particle size

Read more

Summary

Introduction

Plastic is commonly produced from petroleum-based materials which are nonrenewable. Urbanization and rapid global industrial growth have increased usage of plastic materials in our daily needs [1]. Waste polyethylene terephthalate (PET) bottles can contaminate natural water streams, killing aquatic animals and can clog up urban drainage systems resulting in urban floods if they are not properly addressed [4]. These waste plastics are naturally non-degradable even after a long period [5] due to their high thermal, mechanical and chemical resistance. Landfilling and incineration of waste plastic is non-attractive option Those common ways of disposing plastics significantly contribute to accumulation of waste plastic and emission of air pollutants in the environment [6] [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.