Abstract

Fused silica is widely used in investment casting shell molds as flour, stucco and binder for its superior properties, such as low linear thermal expansion coefficient and high thermal shock resistance. Investment shell molds are usually fired after the de-wax process to remove the residue pattern material, and to improve shell strength through sintering. The firing temperatures are generally high enough to affect the phase constituent and microstructure of the shells, which further influences the shell strength. Firing duration at firing temperature is another important factor having an impact on the shell strength due to grain coarsening, but it is often overlooked by investment foundries. In this article, the room temperature moduli of rupture of investment shells fired at different conditions were determined. The crystallinity of fused silica shells was determined using X-ray diffraction. The differences on the shell strength were discussed and correlated with the microstructure and phase constitution in the shells after different firing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.