Abstract

The use of SiC/SiC composites for nuclear application has recently been considered because of intrinsic low activation and superior high temperature mechanical properties of SiC. The property of SiC fiber is a key issue in order to improve mechanical properties of SiC/SiC composites following irradiation. SiC/SiC composites with unidirectional fibers were fabricated by chemical vapor infiltration method. Low oxygen and highly crystalline fibers or just low oxygen fibers were used in the composites. The specimens were irradiated at Japan Material Testing Reactor and High Flux Isotope Reactor. The effects of neutron irradiation on mechanical properties were examined by three points flexural test. Microstructure and fracture behavior were observed by scanning electron microscopy before and after neutron irradiation. The SiC/SiC composites with a low oxygen content, near-stoichiometric atomic composition and highly crystalline SiC fibers showed the excellent stability to neutron irradiation. The mechanical property of this material did not degrade, even after neutron irradiation up to 10 dpa, while the other materials with non-highly crystalline SiC fibers degraded significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.