Abstract

To investigate how patterns generated by femtosecond (fs) laser and femtosecond laser power affect the surface roughness (Ra) and biaxial flexural strength (BFS) of monolithic zirconia. Eighty disk-shaped zirconia specimens were divided into eight subgroups (n = 10): Control (C), airborne-particle abrasion (APA), 400 mW fs laser (spiral [SP(400)], square [SQ(400)], circular [CI(400)]), and 700 mW fs laser ([SP(700)], [SQ(700)], [CI(700)]). Ra values were calculated by using a surface profilometer. One additional specimen per group was analyzed with scanning electron microscopy and x-ray diffractometry. BFS values were obtained by using the piston-on-3-ball test. One-way ANOVA and either Tukey's HSD (BFS) or Tamhane's T2 (Ra) tests were used to evaluate data (α = 0.05). Regardless of the pattern and power, fs laser groups had higher Ra than C and APA, while SP groups had lower Ra than CI and SQ groups (p ≤ 0.004). For each pattern, Ra increased with higher laser power (p < 0.001), while the laser power did not affect the BFS (p ≥ 0.793). CI and SQ groups had lower BFS than the other groups (p ≤ 0.040), whereas SP groups had similar BFS to C and APA (p ≥ 0.430). Fs laser microstructuring with spiral surface pattern increased the Ra without jeopardizing the BFS of zirconia. Thus, this treatment might be an option to roughen tested zirconia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.