Abstract
A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, volatile fatty acids (VFA) production, bacterial protein synthesis, and methane (CH4) output of warm-season annual grasses. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design using 7 d for adaptation to treatment and 3 d for sample collection. Treatments were (1) 100% orchardgrass (Dactylis glomerata L.; ORD); (2) 50% orchardgrass + 50% Japanese millet [Echinochloa esculenta (A. Braun) H. Scholz; MIL]; (3) 50% orchardgrass + 50% brown midrib sorghum × sudangrass (Sorghum bicolor L. Moench × S. bicolor var. sudanense; SSG]; or (4) 50% orchardgrass + 25% millet + 25% sorghum × sudangrass (MIX). Fermentors were fed 60 g of dry matter (DM)/d in equal portions of herbage 4 times daily (0730, 1030, 1400, and 1900 h). To replicate a typical 12-h pasture rotation, fermentors were fed the orchardgrass at 0730 and 1030 h and the individual treatment herbage (orchardgrass, Japanese millet, sorghum × sudangrass, or 50:50 Japanese millet and sorghum × sudangrass) at 1400 and 1900 h. Gas samples for CH4 analysis were collected 6 times daily at 0725, 0900, 1000, 1355, 1530, and 1630 h. Fermentor pH was determined at the time of feeding, and fermentor effluent samples for NH3-N and VFA analyses were taken daily at 1030 h on d 8, 9, and 10. Samples were also analyzed for DM, organic matter (OM), crude protein, and fiber fractions to determine nutrient digestibilities. Bacterial efficiency was estimated by dividing bacterial N by truly digested OM. True DM and OM digestibilities and pH were not different among treatments. Apparent OM digestibility was greater in ORD than in MIL and SSG. The concentration of propionate was greater in ORD than in SSG and MIX, and that of butyrate was greatest in ORD and MIL. Methane output was greatest in MIL, intermediate in ORD, and lowest in SSG and MIX. Nitrogen intake did not differ across treatments, whereas bacterial N efficiency per kilogram of truly digestible OM was greatest in MIL, intermediate in SSG and MIX, and lowest in ORD. True crude protein digestibility was greater in ORD versus MIL, and ORD had lower total N, non-NH3-N, bacterial N, and dietary N in effluent flows than MIL. Overall, we detected little difference in true nutrient digestibility; however, SSG and MIX provided the lowest acetate to propionate ratio and lower CH4 output than MIL and ORD. Thus, improved warm-season annual pastures (i.e., brown midrib sorghum × sudangrass) could provide a reasonable alternative to orchardgrass pastures during the summer months when such perennial cool-season grass species have greatly reduced productivity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have