Abstract

The selective catalytic reduction (SCR) NH3 catalyst is mainly used in industrial production and automobile exhaust cleaning. In this study, a novel α%Fe2O3/ZrTiO4 (α=0, 8, 12, 15) catalyst was prepared by the coprecipitation impregnation method. The results show that the NOx conversion rate of 12%Fe2O3/ZrTiO4 catalyst with the optimal composition is high above 80% at 250−400 °C, close to 100% at 300 °C, and N2 selectivity is high above 90% at 200−450 °C. The redox properties, surface acidity, and Oβ/(Oα + Oβ) ratio of ZrTiO4 catalysts are improved after loading Fe2O3 on the ZrTiO4 surface, which is attributed not only to the porous structure of α%Fe2O3/ZrTiO4 catalyst but also to the synergistic interaction between the active component Fe2O3 and the support ZrTiO4. In addition, in-situ DRIFT reactions show that the NH3-SCR reaction of 12%Fe2O3/ZrTiO4 catalyst follows the Eley-Rideal mechanism. A clear reaction mechanism is conducive to a deeper understanding of the reaction process of NOx conversion during SCR. This work provides a feasible strategy for Fe-based SCR catalysts to replace V-based catalysts in the medium temperature range in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.