Abstract

Phosphorus compounds from flue gas have a significant deactivation effect on selective catalytic reduction (SCR) DeNOx catalysts. In this work, the effects of phosphorus over three catalysts (CeO2, CeO2-MoO3, and V2O5-MoO3/TiO2) for NH3-SCR were studied, and characterizations were performed aiming at a better understanding of the behavior and poisoning mechanism of phosphorus over SCR catalysts. The CeO2-MoO3 catalyst showed much better catalytic behavior with respect to resistance to phosphorus and N2 selectivity compared with V2O5-MoO3/TiO2 catalyst. With addition of 1.3 wt % P, the SCR activity of V2O5-MoO3/TiO2 decreased dramatically at low temperature due to the impairment of redox property for NO oxidation; meanwhile, the activity over CeO2 and CeO2-MoO3 catalysts was improved. The superior NO oxidation activity contributes to the activity over P-poisoned CeO2 catalyst. The increased surface area and abundant acidity sites contribute to excellent activity over CeO2-MoO3 catalyst. As the content of P increased to 3.9 wt %, the redox cycle over CeO2 catalyst (2CeO2 ↔ Ce2O3 + O*) was destroyed as phosphate accumulated, leading to the decline of SCR activity; whereas, more than 80% NOx conversion and superior N2 selectivity were obtained over CeO2-MoO3 at T > 300 °C. The effect of phosphorus was correlated with the redox properties of SCR catalyst for NH3 and NO oxidation. A spillover effect that phosphate transfers from Ce to Mo in calcination was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call