Abstract
Morphology, magnetic and magnetocaloric properties of La0.62Er0.05Ba0.33Mn1−xFexO3(x = 0.00, 0.05 and 0.15) were experimentally investigated. Solid-state reaction method was used in the preparation of the samples. The microstructure of the samples was determined by scanning electron microscopy (SEM). From the XRD study, it has been found that all samples are single-phased and crystallized in the rhombohedral structure with the R3-c space group. For x = 0.05 and 0.15, a steep drop of zero field-cooled (ZFC) magnetization at low temperature signifies the formation of cluster- or spin-glass state. This is caused by the competition between the ferromagnetic and antiferromagnetic interaction. A sensitive response to substituting Fe for Mn is observed in the magnetic and magnetocaloric properties. We found that Fe doping is powerful enough to reduce Curie temperature TC and it brings about cluster glass behaviours. The magnetocaloric effect is calculated from the measurement of initial isothermal magnetization versus magnetic field at various temperatures. The maximum entropy change left | {{Delta } S_{M}^{max } } right | reaches the highest values of 3.31, 3.12, and 2.57 J/kg K in magnetic field. However, the relative cooling power decreases with Fe content from x = 227.44 to 188.68 J/kg for x = 0.00 to x = 0.15 compositions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.