Abstract

The influence of Fe addition on the phase transformation and the microstructure of Cu67Al27-XMn6FeXshape memory alloys are investigated by means of electrical resistivity, X-ray diffraction, scanning electron microscopy and microhardness test. It was shown that the Ms (Martensitic start transformation) temperature of the 850°C heat-treated alloy exhibit a sharp increase as Fe content increases, by comparison with the alloy without heat-treatment. For example, after 850°C heat-treatment, the Ms temperature of the alloy increases from 52K to 135K when Fe is added from 0 at.% to 1.5 at.%. The microstructure of as-homogenized Cu67Al27-XMn6FeXalloys consists of Cu3Al matrix, γ2(Cu9Al4) and α (Cu) phases. Fe element was distributed in precipitates and matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.