Abstract

Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call