Abstract
1,1,2,2-Tetrachloroethane (TeCA) contaminated groundwater at the Aberdeen Proving Ground discharges through an anaerobic wetland in West Branch Canal Creek (MD), where dechlorination occurs. Two microbially mediated pathways, dichloroelimination and hydrogenolysis, account for most of the TeCA degradation at this site. The dichloroelimination pathways lead to the formation of vinyl chloride (VC), a recalcitrant carcinogen of great concern. The goal of this investigation was to determine whether microbially-available Fe(III) in the wetland surface sediment influenced the fate of TeCA and its daughter products. Differences were identified in the TeCA degradation pathway between microcosms treated with amorphous ferric oxyhydroxide (AFO-treated) and untreated (no AFO) microcosms. TeCA degradation was accompanied by a lower accumulation of VC in AFO-treated microcosms than untreated microcosms. The microcosm incubations and subsequent experiments with the microcosm materials showed that AFO treatment resulted in lower production of VC by (1) shifting TeCA degradation from dichloroelimination pathways to production of a greater proportion of chlorinated ethane products, and (2) decreasing the microbial capability to produce VC from 1,2-dichloroethene (DCE). VC degradation was not stimulated in the presence of Fe(III). Rather, VC degradation occurred readily under methanogenic conditions and was inhibited under Fe(III)-reducing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.