Abstract

To select the proper composition and obtain an overall material–microstructure–property relationship for Cu–Fe alloy, the effect of Fe content on microstructure and properties of Cu–Fe-based composite coatings by laser induction hybrid rapid cladding was investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardness measurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content, the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fe content, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-rich particles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of the composite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is much twice higher than that of the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.