Abstract

With 200 mmol/L NaCl treatment on barley cultivar “Jian 4” (Hordeum vulgare L. cv. J4) seedlings for 6 d, the contents of covalently and noncovalently conjugated polyamines (PAs) and activities of H+-ATPase in plasma membrane (PM) vesicles isolated from the roots decreased remarkably. Moreover, the activity of Na+/H+ antiport was detected first in PM vesicles. The results showed that the decrease in the contents of membrane phospholipid, noncovalently conjugated PAs and activity of H+-ATPase caused by NaCl could be restored partially by application of 1 mmol/L stearie acid (C16:0) and linoleic acid (C18:2), and C18:2 was more effective than C16:0 In addition, a reduction in the contents of covalently conjugated PAs was only reversed partially in the presence of C18:2 Furthermore, Na+/H+ antiport activity was strengthened by exogenous C16:0 and C18:2 and C18:2 was more effective than C16:0. The correlative analysis suggested that, after application of C16:0 and C18:2 under salt stress, there was a significant positive correlation existing among phospholipid content, noncovalently conjugated PA levels, H+-ATPase activities and Na+/H+ antiport activities, indicating that one of the mitigative mechanisms of exogenous fatty acids on salt injury was to improve membrane phospholipid and PA contents, leading to an enhance in membrane integrity and a change in charge status of PM vesicles, so the activity of membrane-associated enzyme H+-ATPase was increased and synthesis of Na+/H+ antiport protein was activated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.