Abstract

Age hardening behaviors of SiC whisker reinforced composites with 6061 Al matrix fabricated by P.M. (powder metallurgy) and squeeze casting were investigated to examine the effect of the fabrication method on the aging kinetics. In the squeeze cast composite, numorous triangular particles which is believed to be MgAlp2O4 were observed at Al/SiC interfaces whereas no visible interface particles were observed in the P. M. composite. P.M. composite showed faster age hardening and reached the maximum hardness earler than the squeeze cast composites. The decrease of the aging kinetics in squeeze cast 6061 Al matrix composites compared to that in P.M. composites is thought to result from more severe depletion of Mg atoms due to interfacial reactions in squeeze cast composites. The uniformity of whisker distribution is suggested to influence the general aging behavior through its effect on the local dislocation density. Data on the aging kinetics and the interfacial reactions in other Al alloys were also examined to study various factors which can influence the aging kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call