Abstract

Extracellular polymeric substances (EPS) have a great impact on the characteristics of sediment particles and their environmental effects in hydro-environmental systems, yet little effort has been made to study the considerable variability in the element adsorption process of sediment particles caused by EPS. Understanding the variability of the adsorption characteristics of sediment particles associated with EPS and quantifying the scale of the adsorption isotherm parameters are important for understanding how EPS mediate sediment properties and environmental factors. In this paper, isothermal equilibrium adsorption experiments are done on phosphorus to study the influence of EPS on the adsorption characteristics of sediment particles, and the Langmuir adsorption isotherm is applied to analyze the adsorption rule of sediment particles under the impact of EPS. The current research demonstrates that significant differences will take place in the adsorption characteristics of sediments coated with EPS at different development phases and the phosphorus adsorption capacity of sediment particles increases with the growth of EPS. The difference in the adsorption percentage between sediment particles coated with EPS of 0 and 6 weeks growth time is about 42%–60% for different initial aqueous phosphorus concentration. A formula describing the adsorption isotherm parameter of the maximum material (element) adsorption capacity of sediment particles change over time is further proposed based on the experimental data. The current study provides some evidence for the interaction of sediment particles, EPS, and adsorbed elements in the water environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.