Abstract
We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With the increase of the photoassociation laser intensity, the linear variation of the frequency shift is measured by recording the photoassociation spectra of the long-range state of Cs molecule below the 6S1/2+6P1/2 dissociation limit at different magnetic fields. The slope of the frequency shift to the intensity of the photoassociation laser exhibits a strong dependence on the external magnetic field. The experimental data is simulated with an analytic theory model, in which a single channel rectangular potential with the tunable well depth is introduced to acquire the influence of the magnetic field on the atomic behavior in the effective range where photoassociation occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.