Abstract

Carrier lifetime is one of the most fundamental physical parameters that characterizes the average time of carrier recombination in any material. The control of carrier lifetime is the key to optimizing the device function by tuning the electro–optical conversion quantum yield, carrier diffusion length, carrier collection process, etc. Till now, the prevailing modulation methods are mainly by defect engineering and temperature control, which have limitations in the modulation direction and amplitude of the carrier lifetime. Here, we report an effective modulation on the ultrafast dynamics of photoexcited carriers in two-dimensional (2D) MoS2 monolayer by uniaxial tensile strain. The combination of optical ultrafast pump–probe technique and time-resolved photoluminescence (PL) spectroscopy reveals that the carrier dynamics through Auger scattering, carrier–phonon scattering, and radiative recombination keep immune to the strain. But strikingly, the uniaxial tensile strain weakens the trapping of photoexcited carriers by defects and therefore prolongs the corresponding carrier lifetime up to 440% per percent applied strain. Our results open a new avenue to enlarge the carrier lifetime of 2D MoS2, which will facilitate its applications in high-efficient optoelectronic and photovoltaic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.