Abstract

An experimental study is performed towards identifying cross-talk effects between DBD plasma actuators and external flow. An actuator is positioned in a boundary layer operated in a range of free stream velocities from 0 to 60 m/s, and tested both in counter-flow and co-flow forcing configurations. Electrical measurements are used for estimating the power consumption and the discharge formation is visualized using a CCD camera. The actuator's force is measured using a sensitive load cell. Results show the power consumption is constant for different flow velocities and actuator configurations. The plasma light emission is constant for co-flow forcing but shows a trend of increasing intensity with counter-flow forcing for increasing free stream velocities. The measured force is constant for free stream velocities larger than 20 m/s, with same magnitude and opposite direction for the counter-flow and co-flow configurations. In quiescent conditions, the measured force is smaller due to the change in wall shear force by the induced wall-jet. An analytical model is presented to estimate the influence of external flow on the actuator force. It is based on conservation of momentum through the ion-neutral collisional process while including the contribution of the wall shear force. Satisfactory agreement is found between the prediction of the model and experimental data at different external flow velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call