Abstract
As a widely used separation device, a cyclone separator is especially important to improve its separation efficiency. In this paper, a new two-stage cyclone separator is designed and modeled by the Reynolds stress model. Under the premise of determining the diameter of the second-stage cyclone (D), the effects of five first-stage cyclone diameters (Du) on the performance of the two-stage cyclone are simulated. The performance of the single-stage cyclone separator is also obtained. The results show that Du has significant effects on the internal pressure field, flow field, and vortex core of the two-stage cyclone. Compared with the single-stage cyclone separator, the separation efficiency of the two-stage cyclone separator is significantly improved. When Du = 6D, the separation efficiency is improved by 15.5% compared with that of the single-stage cyclone. In addition, the two-stage cyclone separator can effectively reduce the Euler number.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have