Abstract

Calcium (Ca) is one of essential elements for plant growth and development, and also plays a role in regulating plant cell physiology and cellular response to the environment. Here, we studied whether calcium played a role in enhancing tolerance of plants to acid rain stress by hydroponics and simulating acid rain stress. Our results show that acid rain (pH 4.5/pH 3.0) caused decreases in dry weight biomass, chlorophyll content and uptake of nutrients elements (NO3-, P, K, Mg, Zn and Mo) and an increase in membrane permeability of root. However, all parameters in soybean treated with exogenous calcium (5 mM) and acid rain at pH 4.5 were closed to the control levels. In addition, exogenous calcium (5 mM) alleviated the inhibition induced by pH 3.0 acid rain on the activity of plasma membranes H+-ATPase and the expression of GmPHA1 at transcriptional level, being benefiting to maintaining uptake of nutrients (NO3-, P, K, Mg, and Zn), and then lower the decrease in dry weight biomass and chlorophyll content. After a 5-day recovery (without acid rain stress), all parameters in soybean treated with acid rain at pH 3.0 and exogenous calcium were still worse than those of the control, but obviously better than those treated with acid rain at pH 3.0. Higher activity of plasma membrane H+-ATPase in soybean treated with acid rain at pH 3.0 and exogenous calcium was good to uptake of nutrients and promoted the recovery of soybean growth, compared with soybean treated with acid rain at pH 3.0. In conclusion, exogenous calcium could alleviate the inhibition caused by acid rain on soybean growth by increasing the activity of plasma membrane H+-ATPase for providing driving force to nutrient absorption, and its regulating effect was limited by intensity of acid rain. Furthermore, the application of exogenous calcium can be one of ways to alleviate the damage caused by acid rain to plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.