Abstract

The importance of the central catecholamines, with the emphasis on the noradrenergic neurons in the differential sensitivity to ethanol between the AT (alcohol-tolerant) rats selected for low and the ANT (alcohol-nontolerant) rats selected for high sensitivity to ethanol-induced (2 g/kg) motor impairment, was clarified by studying the effects of ethanol (2 and 4 g/kg, IP) on the utilization of norepinephrine (NA) and dopamine (DA), and on the metabolism of NA. The utilization of the catecholamines was estimated from the disappearance of the amines after inhibition of the brain tyrosine hydroxylase by α-methyl-p-tyrosine (200 mg/kg, IP), given 15 min after the administration of ethanol. The formation of 3-methoxy-4-hydroxy-phenylglycol (MHPG) was used as an estimate of NA metabolism, and was measured 30 min after the administration of ethanol. The basal utilization rate of NA and DA was similar between the two rat lines, but the increased formation of MHPG suggested that the naive AT rats had a higher noradrenergic activity in the limbic forebrain, hypothalamus, and cerebellum than did ANT rats. In the brain of both lines, ethanol accelerated the utilization and metabolism of NA in the same manner. Ethanol also increased the utilization of DA in the limbic forebrain of the AT and ANT rats. The higher sensitivity of the ANT rats' DA neurons to ethanol in the limbic forebrain and striatum was revealed by the significant rat line × ethanol interaction. The present findings suggest that the AT and ANT rats differ in the dopaminergic, but not in the noradrenergic responses to ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call