Abstract
The aim of this research was to determine the inhibitory effect of vapor phase of five essential oils (EOs) on the growth of seven strains of Penicillium commune isolated from moldy milk products. Another objective was to determine the minimum inhibitory doses (in vitro and probit analyses) of EOs, which at concentration 625 μL.L-1 of air completely inhibited the growth of all strains. The antifungal activity was evaluated by the micro-atmosphere method. The essential oils used in this study were extract of plants from family Myrtaceae. Only one essential oil – clove (from Syzygium aromaticum L.; leaves) completely inhibited the growth of all strains during cultivation at 25 °C and 5 °C. Eucalyptus essential oil (from Eucaliptus globulus; leaves), tea tree essential oil (from Melaleuca alternifolia Cheel; leaves), cajeput essential oil (from Melaleuca leucadendra L.; leaves and twigs), niaouli essential oil (from Melaleuca quinquenervia (Cav.) S.T.Blake; leaves) have different effects on the growth of P. commune strains. The order of tested essential oils according to the inhibition effect on the growth of the strains of P. commune (from the strongest to the weakest effect) was: clove > tea tree > cajeput > niaouli > eucalyptus. Clove EO that completely inhibited the growth of all strains was used to determine minimum inhibitory doses (MIDs). The MIDs were 125 µL.L-1 of air for two strains of P. commune and 250 µL.L-1 of air for five strains of P. commune on the 7th and 14th day of cultivation, also. Using probit analysis, predicted MIDs90 and MIDs50 were calculated. The MIDs90 were determined from 104.93 to 301.37 µL.L-1 of air.
Highlights
Today's consumers demand food that is minimally technologically processed and without synthetic preservatives or additives, because of the possible adverse health effects
We focused on the composition of the essential oils used
The gas chromatography coupled with mass spectrometry (GC-MS) analyses of the essential oils led to identification of 78 compounds, 31 from them are presented in amount of ≥1 percentage minimally in one essential oil
Summary
Today's consumers demand food that is minimally technologically processed and without synthetic preservatives or additives, because of the possible adverse health effects. The application of natural antimicrobial agents such as extracts, essential oils, components of spices, and other aromatic plants could be significant in resolving these problems. These agents may be useful as additives in limiting or preventing the development of harmful fungi in food, as food surface protectants, or in modified atmosphere packaging of food (Kocic-Tanackov et al, 2014). Natural preservatives could constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs (Pisoschi et al, 2018)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.