Abstract

The long-periodic effects of the equinoctial precession on geosynchronous Earth orbit satellites are investigated. The equations of motion in a reference frame that coprecesses with the Earth are developed, and the resulting variational equations are derived using mean classical orbital elements. The Earth gravitational model includes the J 2 and J 3 zonal harmonics, which induce the equinoctial precession due to the lunisolar gravitational torque. It is shown that the ever-growing lifetime and mass of geosynchronous Earth orbit satellites render the equinoctial precession a significant factor, which should be taken into account during mission design, as it affects north-south stationkeeping maneuvers. The equilibria of the variational equations including the zonal harmonics and the equinoctial precession are investigated and a class of stable frozen orbits which are equinoctial precession invariant is derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.