Abstract

The geosynchronous earth orbit (GEO) satellites have good coverage performance and are widely used in WAAS, BDS, CAPS and other regional augmentation and regional navigation systems. At the same time, the precise orbit determination and prediction of such satellites play a significant role in high-precision navigation and user real-time positioning. In order to obtain higher accuracy of orbit determination, the laser ranging device is improved by equipping with a silicon-substrate germanium MSM photodetector in this study. In addition, the surface plasmon resonance augmentation effect is further studied to further enhance the photoelectric performance of the silicon-substrate germanium MSM photodetector. The detector is connected to the OPA657. The corresponding pre-amplified circuit is further designed in this study so that the laser ranging device can be used for the orbit determination application of GEO navigation satellites. In the experiment, the designed silicon-substrate germanium MSM photodetector is tested firstly, the finite-different time-domain (FDTD) method is used to analyze the structure of the photodetector. Then, the effects of the structural parameters such as the grating period on the resonance augmentation of the designed photodetector are analyzed. The results reveal that the photodetector has the best performance at 1500 nm with the absorption enhancement factor of higher than 7. The GNSS combined with the laser ranging is used for comparing the orbit determination errors of GEO satellites. 10 laser observation stations are selected, some of which are equipped with the laser ranging device designed in this study and supply to various GEO satellites for information collection. The results show that GEO satellites have to be introduced to the system deviation when adding the laser ranging data, otherwise they will deviate from the orbit. In addition, the laser ranging device designed in this study can significantly reduce the deviation caused by the introduction of laser ranging data from GEO satellites compared with traditional laser ranging devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call