Abstract

A transwall gradient in resting membrane potential (RMP) exists across the circular muscle layer in the mouse colon. This gradient is dependent on endogenous generation of CO. H2S is also generated in muscle layers of the mouse colon. The effect of endogenously generated H2S on the transwall gradient is not known. The aim was to investigate the role of endogenous H2S. Our results showed that the CSE inhibitor dl-propargylglycine (PAG, 500μm) had no effect on the transwall gradient. However, in preparations pretreated with the nitric oxide synthase inhibitor N-nitro-l-arginine (l-NNA, 200μm) and in nNOS-knockout (KO) mouse preparations, PAG shifted the transwall gradient in the depolarizing direction. In CSE-KO-nNOS-KO mice, the gradient was shifted in the depolarizing direction. Endogenous generation of NO was significantly higher in muscle preparations of CSE-KO mice compared to wild-type (WT) mice. The amplitude of NO-mediated slow inhibitory junction potentials (S-IJPs) evoked by electric field stimulation was significantly higher in CSE-KO mouse preparations compared to the amplitude of S-IJPs in wild-type mouse preparations. CSE was present in all submucosal ganglion neurons and in almost all myenteric ganglion neurons. Eleven per cent of CSE positive neurons in the submucosal plexus and 50% of CSE positive neurons in the myenteric plexus also contained nNOS. Our results suggest that endogenously generated H2S acts as a stealth hyperpolarizing factor on smooth muscle cells to maintain the CO-dependent transwall gradient and inhibits NO production from nNOS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call