Abstract

Sparkling wines elaboration by the “Champenoise” method involves a second fermentation of a base wine in hermetically sealed bottles and a subsequent aging period. The whole process is known as “prise de mousse”. The endogenous CO2 pressure produced during the second fermentation by the yeast Saccharomyces cerevisiae could modify the sub-proteome involved in the response to different stresses, or “stressome”, and cell viability thus affecting the wine organoleptic properties. This study focuses on the stressome evolution along the prise de mousse under CO2 overpressure conditions in an industrial S. cerevisiae strain. The results reveal an important effect of endogenous CO2 overpressure on the stress sub-proteome, cell viability and metabolites such as glycerol, reducing sugars and ethanol. Whereas the content of glycerol biosynthesis-related proteins increased in sealed bottle, those involved in the response to toxic metabolites like ROS, ethanol, acetaldehyde and acetic acid, decreased in content. Proteomic profile obtained in this study may be used to select suitable wine yeast strains for sparkling wine elaboration and improve their stress tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.