Abstract

The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.

Highlights

  • Sparkling wine is an ancient beverage appreciated for its unique and pleasant taste

  • The first group is constituted by acetate esters, in which acetate is the acid group and ethanol or an alcohol complex derived from the metabolism of the amino acids, are the alcohol group

  • We focused on the esters because of their positive impact on the organoleptic properties and provide, for the first time, the proteins involved in their metabolism and a metabolome–proteome relation during the second fermentation in the production of sparkling wine

Read more

Summary

Introduction

Sparkling wine is an ancient beverage appreciated for its unique and pleasant taste This is attributed to aroma compounds that are produced during fermentation, highlighting the higher alcohols and esters. The main pathway that leads to the formation of aroma compounds that contribute to the wine organoleptic properties are the Ehrlich pathway for higher alcohols or the enzymes responsible for the formation of esters. These biochemical pathways were studied mainly in yeast species [1] that include more than 2000 yeast species; some of them have different and potentially interesting yeast species for the food and beverage industries [2]. Aroma thresholds (mg/L) are described in Sumby et al (2010) [30]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.